GPU Based Implementation of Recursive Digital Filtering Algorithms

Dong-hwan Lee, Wonyong Sung
Department of Electrical Engineering and Computer Science, Seoul National University, Gwanak-gu, Seoul 151-744 Korea
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013


   author={Lee, Dong-hwan and Sung, Wonyong},



Download Download (PDF)   View View   Source Source   



Recursive filtering is widely used for many signal processing applications. Speeding-up the computation of recursive filtering using many processing elements is difficult because of the dependency problem. In this paper, massively parallel computation of recursive filtering algorithms using GPGPUs (General Purpose Graphics Processing Units) is studied. The proposed method uses the multi-block parallel processing algorithm, where each thread executes one block of data as independently as possible. To resolve the dependency among threads, we develop a fast lookahead method that shows high efficiency even when thousands of threads are used. The developed method has been implemented using Nvidia GTX 285 GPU and shows over 15 times of speed-up when compared to sequential CPU based implementations.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477693007
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477693007
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => AVtkLgWY9os10MTgCsA75jEKgFI=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2038 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: