10085

Early Experiences With The OpenMP Accelerator Model

Chunhua Liao, Yonghong Yan, Bronis R. de Supinski, Daniel J. Quinlan, Barbara Chapman
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
9th International Workshop on OpenMP (IWOMP), 2013

@article{liao2013early,

   title={Early Experiences With The OpenMP Accelerator Model},

   author={Liao, Chunhua and Yan, Yonghong and de Supinski, Bronis R and Quinlan, Daniel J and Chapman, Barbara},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

815

views

A recent trend in mainstream computer nodes is the combined use of general-purpose multicore processors and specialized accelerators such as GPUs and DSPs in order to achieve better performance and to reduce power consumption. To support this trend, the OpenMP Language Committee has approved a set of extensions to OpenMP (referred to as the OpenMP accelerator model). The initial version is the subject of Technical Report 1 (TR1) while OpenMP 4.0 Release Candidate 2 (RC2) further refines the extensions. In this paper, we examine the newly released accelerator directives and create an initial reference implementation, referred to as HOMP (Heterogeneous OpenMP). Focused on targeting NVIDIA GPUs, our work is based on an existing OpenMP implementation in the ROSE source-to-source compiler infrastructure. HOMP includes extensions to parse the new constructs and to represent them in the AST and other compiler translation details. Further we provide initial runtime support. For our evaluation, we have adapted a few existing OpenMP codes to use the accelerator model directives and present preliminary performance results. Finally, we critique the accelerator model in terms of its impact on developers and compiler writers and suggest possible improvements.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481191336
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481191336
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 2RxbFmiaNonWocAD+mwEpPia44I=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2080 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: