Starchart: Hardware and Software Optimization Using Recursive Partitioning Regression Trees

Wenhao Jia, Kelly A. Shaw, Margaret Martonosi
Princeton University
22nd International Conference on Parallel Architectures and Compilation Techniques (PACT 2013), 2013

   title={Starchart: Hardware and Software Optimization Using Recursive Partitioning Regression Trees},

   author={Jia, Wenhao and Shaw, Kelly A. and Martonosi, Margaret},



Download Download (PDF)   View View   Source Source   



Graphics processing units (GPUs) are in increasingly wide use, but significant hurdles lie in selecting the appropriate algorithms, runtime parameter settings, and hardware configurations to achieve power and performance goals with them. Exploring hardware and software choices requires time-consuming simulations or extensive real-system measurements. While some auto-tuning support has been proposed, it is often narrow in scope and heuristic in operation. This paper proposes and evaluates a statistical analysis technique, Starchart, that partitions the GPU hardware/software tuning space by automatically discerning important inflection points in design parameter values. Unlike prior methods, Starchart can identify the best parameter choices within different regions of the space. Our tool is efficient-evaluating at most 0.3% of the tuning space, and often much less-and is robust enough to analyze highly variable real-system measurements, not just simulation. In one case study, we use it to automatically find platform-specific parameter settings that are 6.3x faster (for AMD) and 1.3x faster (for NVIDIA) than a single general setting. We also show how power-optimized parameter settings can save 47W (26% of total GPU power) with little performance loss. Overall, Starchart can serve as a foundation for a range of GPU compiler optimizations, auto-tuners, and programmer tools. Furthermore, because Starchart does not rely on specific GPU features, we expect it to be useful for broader CPU/GPU studies as well.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1542 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

274 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: