On Benchmarking the Matrix Multiplication Algorithm using OpenMP, MPI and CUDA Programming Languages

Muhammed Al-Mulhem, Abdulah AlDhamin, Raed Al-Shaikh
Information & Computer Science Department, King Fahd University of Petroleum & Minerals
The 17th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI), 2013

   title={On Benchmarking the Matrix Multiplication Algorithm using OpenMP, MPI and CUDA Programming Languages},

   author={Al-Mulhem, Muhammed and AlDhamin, Abdulah and Al-Shaikh, Raed},



Download Download (PDF)   View View   Source Source   



Parallel programming languages represent a common theme in the evolution of high performance computing (HPC) systems. There are several parallel programming languages that are directly associated with different HPC systems. In this paper, we compare the performance of three commonly used parallel programming languages, namely: OpenMP, MPI and CUDA. Our performance evaluation of these languages is based on the implementation of matrix multiplication algorithms. Matrix multiplication is chosen because of its wide application in many scientific and engineering problems such as bioinformatics, linear algebra, and computer graphics. Our results show that CUDA programming delivers up to 15 fold speed acceleration relative to OpenMP and MPI Programming. However, CUDA programming may prove comparatively more challenging to programmers.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

197 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1342 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: