10152

Graph-Based Substructure Pattern Mining Using CUDA Dynamic Parallelism

Fei Wang, Jianqiang Dong, Bo Yuan
Intelligent Computing Lab, Division of Informatics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China
14th International Conference on Intelligent Data Engineering and Automated Learning, 2013
@article{wang2013graph,

   title={Graph-Based Substructure Pattern Mining Using CUDA Dynamic Parallelism},

   author={Wang, Fei and Dong, Jianqiang and Yuan, Bo},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

950

views

CUDA is an advanced massively parallel computing platform that can provide high performance computing power at much more affordable cost. In this paper, we present a parallel graph-based substructure pattern mining algorithm using CUDA Dynamic Parallelism. The key contribution is a parallel solution to traversing the DFS (Depth First Search) code tree. Furthermore, we implement a parallel frequent subgraph mining algorithm based on the subgraph mining techniques used in gSpan and the entire subgraph mining procedure is executed on GPU to ensure high efficiency. This parallel gSpan is functionally identical to the original gSpan and experiment results show that, with the latest CUDA Dynamic Parallelism techniques, significant speedups can be achieved on benchmark datasets, particularly in traversing a DFS code tree.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Graph-Based Substructure Pattern Mining Using CUDA Dynamic Parallelism, 5.0 out of 5 based on 1 rating

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1314 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: