10157

LU Factorization with Partial Pivoting for a Multicore System with Accelerators

Jakub Kurzak, Piotr Luszczek, Mathieu Faverge, Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
IEEE Transactions on Parallel and Distributed Computing, vol. 24, no. 8, pp. 1613-1621, 2013
@article{kurzak2013lu,

   title={LU Factorization with Partial Pivoting for a Multicore System with Accelerators},

   author={Kurzak, Jakub and Luszczek, Piotr and Faverge, Mathieu and Dongarra, Jack},

   year={2013},

   publisher={IEEE}

}

Download Download (PDF)   View View   Source Source   

429

views

LU factorization with partial pivoting is a canonical numerical procedure and the main component of the high performance LINPACK benchmark. This paper presents an implementation of the algorithm for a hybrid, shared memory, system with standard CPU cores and GPU accelerators. The difficulty of implementing the algorithm for such a system lies in the disproportion between the computational power of the CPUs, compared to the GPUs, and in the meager bandwidth of the communication link between their memory systems. An additional challenge comes from the complexity of the memory-bound and synchronization-rich nature of the panel factorization component of the block LU algorithm, imposed by the use of partial pivoting. The challenges are tackled with the use of a data layout geared toward complex memory hierarchies, autotuning of GPU kernels, fine-grain parallelization of memorybound CPU operations and dynamic scheduling of tasks to different devices. Performance in excess of one TeraFLOPS is achieved using four AMD Magny Cours CPUs and four NVIDIA Fermi GPUs.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1512 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

262 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: