10159

Scalable Dense Linear Algebra on Heterogeneous Hardware

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, Jack J. Dongarra
Innovative Computing Laboratory – The University of Tennessee Knoxville
Chapter in book HPC: Transition Towards Exascale Processing, in the series Advances in Parallel Computing, IOS Press, 2013
@article{bosilca2013scalable,

   title={Scalable Dense Linear Algebra on Heterogeneous Hardware},

   author={Bosilca, George and Bouteiller, Aurelien and Danalis, Anthony and Herault, Thomas and Kurzak, Jakub and Luszczek, Piotr and Tomov, Stanimire and Dongarra, Jack J},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

338

views

Design of systems exceeding 1 Pflop/s and the push toward 1 Eflop/s, forced a dramatic shift in hardware design. Various physical and engineering constraints resulted in introduction of massive parallelism and functional hybridization with the use of accelerator units. This paradigm change brings about a serious challenge for application developers, as the management of multicore proliferation and heterogeneity rests on software. And it is reasonable to expect, that this situation will not change in the foreseeable future. This chapter presents a methodology of dealing with this issue in three common scenarios. In the context of shared-memory multicore installations, we show how high performance and scalability go hand in hand, when the well-known linear algebra algorithms are recast in terms of Direct Acyclic Graphs (DAGs), which are then transparently scheduled at runtime inside the Parallel Linear Algebra Software for Multicore Architectures (PLASMA) project. Similarly, Matrix Algebra on GPU and Multicore Architectures (MAGMA) schedules DAG-driven computations on multicore processors and accelerators. Finally, Distributed PLASMA (DPLASMA), takes the approach to distributed-memory machines with the use of automatic dependence analysis and the Direct Acyclic Graph Engine (DAGuE) to deliver high performance at the scale of many thousands of cores.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

147 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1230 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: