10284

Barrier Invariants: A Shared State Abstraction for the Analysis of Data-Dependent GPU Kernels

Nathan Chong, Alastair F. Donaldson, Paul H.J. Kelly, Jeroen Ketema, Shaz Qadeer
Imperial College London
28th ACM International Conference on Object Oriented Programming, Systems, Languages, and Applications (OOPSLA 2013), 2013
@article{donaldson2013barrier,

   title={Barrier Invariants: A Shared State Abstraction for the Analysis of Data-Dependent GPU Kernels},

   author={Donaldson, Nathan Chong Alastair F and Ketema, Paul HJ Kelly Jeroen and Qadeer, Shaz},

   year={2013}

}

Data-dependent GPU kernels, whose data or control flow are dependent on the input of the program, are difficult to verify because they require reasoning about shared state manipulated by many parallel threads. Existing verification techniques for GPU kernels achieve soundness and scalability by using a two-thread reduction and making the contents of the shared state nondeterministic each time threads synchronise at a barrier, to account for all possible thread interactions. This coarse abstraction prohibits verification of data-dependent kernels. We present barrier invariants, a novel abstraction technique which allows key properties about the shared state of a kernel to be preserved across barriers during formal reasoning. We have integrated barrier invariants with the GPUVerify tool, and present a detailed case study showing how they can be used to verify three prefix sum algorithms, allowing efficient modular verification of a stream compaction kernel, a key building block for GPU programming. This analysis goes significantly beyond what is possible using existing verification techniques for GPU kernels.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

167 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1275 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: