10384

Synthesis of Custom Networks of Heterogeneous Processing Elements for Complex Physical System Emulation

Chen Huang, Bailey Miller, Frank Vahid, Tony Givargis
Department of Computer Science and Engineering – University of California, Riverside
ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 18, no. 2, pp. 22-42, 2013
@inproceedings{huang2012synthesis,

   title={Synthesis of custom networks of heterogeneous processing elements for complex physical system emulation},

   author={Huang, Chen and Miller, Bailey and Vahid, Frank and Givargis, Tony},

   booktitle={Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis},

   pages={215–224},

   year={2012},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

399

views

Physical system models that consist of thousands of ordinary differential equations can be synthesized to field-programmable gate arrays (FPGAs) for highly-parallelized, real-time physical system emulation. Previous work introduced synthesis of custom networks of homogeneous processing elements, consisting of processing elements that are either all general differential equation solvers or are all custom solvers tailored to solve specific equations. However, a complex physical system model may contain different types of equations such that using only general solvers or only custom solvers does not provide all of the possible speedup. We introduce methods to synthesize a custom network of heterogeneous processing elements for emulating physical systems, where each element is either a general or custom differential equation solver. We show average speedups of 45x over a 3 GHz single-core desktop processor, and of 11x and 20x over a 3 GHz four-core desktop and a 763 MHz NVIDIA graphical processing unit, respectively. Compared to a commercial high-level synthesis tool including regularity extraction, the networks of heterogeneous processing elements were on average 10.8x faster. Compared to homogeneous networks of general and single-type custom processing elements, heterogeneous networks were on average 7x and 6x faster, respectively.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: