Dynamic Load Balancing on Massively Parallel Computer Architectures

Florian Wende
Freie Universitat Berlin
Konrad-Zuse-Zentrum fur Informationstechnik Berlin, 2013


   title={Dynamic Load Balancing on Massively Parallel Computer Architectures},

   author={Wende, Florian},



Download Download (PDF)   View View   Source Source   



This thesis reports on using dynamic load balancing methods on massively parallel computers in the context of multi-threaded computations. In particular we investigate the applicability of a randomized work stealing algorithm to ray tracing and breadth-first search as representatives of real-world applications with dynamic work creation. For our considerations we made use of current massively parallel hardware accelerators: Nvidia Tesla M2090, and Intel Xeon Phi. For both of the two we demonstrate the suitability of the work stealing scheme for the said real-world applications. Also the necessity of dynamic load balancing for irregular computations on such hardware is illustrated.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1488128052
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1488128052
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => lMXbemiLFs2ZTVkMsQvqpCW119g=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2172 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: