10417

Throughput-Oriented Analytical Models for Performance Estimation on Programmable Hardware Accelerators

Junjie Lai
INRIA – IRISA – CAPS
tel-00854019, (26 August 2013)
@phdthesis{lai2013throughput,

   title={Throughput-Oriented Analytical Models for Performance Estimation on Programmable Hardware Accelerators},

   author={Lai, Junjie},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

607

views

In this thesis work, we have mainly worked on two topics of GPU performance analysis. First, we have developed an analytical method and a timing estimation tool (TEG) to predict CUDA application’s performance for GT200 generation GPUs. TEG can predict GPU applications’ performance in cycle-approximate level. Second, we have developed an approach to estimate GPU applications’ performance upper bound based on application analysis and assembly code level benchmarking. With the performance upper bound of an application, we know how much optimization space is left and can decide the optimization effort. Also with the analysis we can understand which parameters are critical to the performance.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475224422
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475224422
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 45RsAKyCW3a8OFUBL4ue99zL5BU=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2006 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: