Throughput-Oriented Analytical Models for Performance Estimation on Programmable Hardware Accelerators

Junjie Lai
tel-00854019, (26 August 2013)

   title={Throughput-Oriented Analytical Models for Performance Estimation on Programmable Hardware Accelerators},

   author={Lai, Junjie},



Download Download (PDF)   View View   Source Source   



In this thesis work, we have mainly worked on two topics of GPU performance analysis. First, we have developed an analytical method and a timing estimation tool (TEG) to predict CUDA application’s performance for GT200 generation GPUs. TEG can predict GPU applications’ performance in cycle-approximate level. Second, we have developed an approach to estimate GPU applications’ performance upper bound based on application analysis and assembly code level benchmarking. With the performance upper bound of an application, we know how much optimization space is left and can decide the optimization effort. Also with the analysis we can understand which parameters are critical to the performance.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

192 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1329 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: