10437

Accelerating Text Mining Workloads in a MapReduce-based Distributed GPU Environment

Peter Wittek, Sandor Daranyi
Swedish School of Library and Information Science, University of Boras, Boras, Sweden
Journal of Parallel and Distributed Computing, Volume 73, Issue 2, Pages 198-206, 2013
@article{wittek2012accelerating,

   title={Accelerating text mining workloads in a MapReduce-based distributed GPU environment},

   author={Wittek, Peter and Dar{‘a}nyi, S{‘a}ndor},

   journal={Journal of Parallel and Distributed Computing},

   year={2012},

   publisher={Elsevier}

}

Scientific computations have been using GPU-enabled computers successfully, often relying on distributed nodes to overcome the limitations of device memory. Only a handful of text mining applications benefit from such infrastructure. Since the initial steps of text mining are typically data intensive, and the ease of deployment of algorithms is an important factor in developing advanced applications, we introduce a flexible, distributed, MapReduce-based text mining workflow that performs I/O-bound operations on CPUs with industry-standard tools and then runs compute-bound operations on GPUs which are optimized to ensure coalesced memory access and effective use of shared memory. We have performed extensive tests of our algorithms on a cluster of eight nodes with two NVidia Tesla M2050s attached to each, and we achieve considerable speedups for random projection and self-organizing maps.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

153 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1254 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: