10441

A Scalable, Efficient Scheme for Evaluation of Stencil Computations over Unstructured Meshes

James King, Robert M. Kirby
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
IEEE SuperComputing, 2013
@article{king2013scalable,

   title={A Scalable, Efficient Scheme for Evaluation of Stencil Computations over Unstructured Meshes},

   author={King, James and Kirby, Robert M},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

444

views

Stencil computations are a common class of operations that appear in many computational scientific and engineering applications. Stencil computations often benefit from compile-time analysis, exploiting data-locality, and parallelism. Post-processing of discontinuous Galerkin (dG) simulation solutions with B-spline kernels is an example of a numerical method which requires evaluating computationally intensive stencil operations over a mesh. Previous work on stencil computations has focused on structured meshes, while giving little attention to unstructured meshes. Performing stencil operations over an unstructured mesh requires sampling of heterogeneous elements which often leads to inefficient memory access patterns and limits data locality/reuse. In this paper, we present an efficient method for performing stencil computations over unstructured meshes which increases data-locality and cache efficiency, and a scalable approach for stencil tiling and concurrent execution. We provide experimental results in the context of post-processing of dG solutions that demonstrate the effectiveness of our approach.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

121 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1176 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: