10444

Towards a functional run-time for dense NLA domain

Mauro Blanco, Pablo Perdomo, Pablo Ezzatti, Alberto Pardo, Marcos Viera
Instituto de Computacion, Universidad de la Republica, Montevideo, Uruguay
2nd ACM SIGPLAN Workshop on Functional High-Performance Computing (FHPC 2013), 2013
@article{blanco2013towards,

   title={Towards a functional run-time for dense NLA domain},

   author={Blanco, Mauro and Perdomo, Pablo and Ezzatti, Pablo and Pardo, Alberto and Viera, Marcos},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

603

views

We investigate the use of functional programming to develop a numerical linear algebra run-time; i.e. a framework where the solvers can be adapted easily to different contexts and task parallelism can be attained (semi-) automatically. We follow a bottom up strategy, where the first step is the design and implementation of a framework layer, composed by a functional version of BLAS (Basic Linear Algebra Subprograms) routines. The framework allows the manipulation of arbitrary representations for matrices and vectors and it is also possible to write and combine multiple implementations of BLAS operations based on different algorithms and parallelism strategies. Using this framework, we implement a functional version of Cholesky factorization, which serves as a proof of concept to evaluate the flexibility and performance of our approach.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472080229
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472080229
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => C6vN3YFWUim9IKB8XIApcd6O+ZE=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1966 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: