Detecting multiple periodicities in observational data with the multi-frequency periodogram. II. Frequency Decomposer, a parallelized time-series analysis algorithm

Roman V. Baluev
Central Astronomical Observatory at Pulkovo of Russian Academy of Sciences, Pulkovskoje sh. 65, St Petersburg 196140, Russia
arXiv:1309.0100 [astro-ph.IM], (31 Aug 2013)
@article{2013arXiv1309.0100B,

   author={Baluev}, R.~V.},

   title={"{Detecting multiple periodicities in observational data with the multi-frequency periodogram. II. Frequency Decomposer, a parallelized time-series analysis algorithm}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1309.0100},

   primaryClass={"astro-ph.IM"},

   keywords={Astrophysics – Instrumentation and Methods for Astrophysics, Astrophysics – Solar and Stellar Astrophysics},

   year={2013},

   month={aug},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1309.0100B},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

This is a parallelized algorithm performing a decomposition of a noisy time series into a number of frequency components. The algorithm analyses all suspicious periodicities that can be revealed, including the ones that look like an alias or noise at a glance, but later may prove to be a real variation. After selection of the initial candidates, the algorithm performs a complete pass through all their possible combinations and computes the rigorous multi-frequency statistical significance for each such frequency tuple. The largest combinations that still survived this thresholding procedure represent the outcome of the analysis. The parallel computing on a graphics processing unit (GPU) is implemented through CUDA and brings a significant performance increase. It is still possible to run FREDEC solely on CPU in the traditional single-threaded mode, when no suitable GPU device is available.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org