Increasing GPU Throughput using Kernel Interleaved Thread Block Scheduling

Mihir Awatramani, Joseph Zambreno, Diane Rover
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
International Conference on Computer Design (ICCD), 2013

   title={Increasing GPU Throughput using Kernel Interleaved Thread Block Scheduling},

   booktitle={Proceedings of the International Conference on Computer Design (ICCD)},



   author={Mihir Awatramani and Joseph Zambreno and Diane Rover}


Download Download (PDF)   View View   Source Source   



The number of active threads required to achieve peak application throughput on graphics processing units (GPUs) depends largely on the ratio of time spent on computation to the time spent accessing data from memory. While compute-intensive applications can achieve peak throughput with a low number of threads, memory-intensive applications might not achieve good throughput even at the maximum supported thread count. In this paper, we study the effects of scheduling work from multiple applications on the same GPU core. We claim that interleaving workload from different applications on a GPU core can improve the utilization of computational units and reduce the load on memory subsystem. Experiments on 17 application pairs from the Rodinia benchmark suite show that overall throughput increases by 7% on average.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1544 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

276 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: