On the Performance and Energy-efficiency of Multi-core SIMD CPUs and CUDA-enabled GPUs

Ronald Duarte, Resit Sendag, Frederick J. Vetter
Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
IEEE International Symposium on Workload Characterization, 2013

   title={On the Performance and Energy-efficiency of Multi-core SIMD CPUs and CUDA-enabled GPUs},

   author={Duarte, Ronald and Sendag, Resit and Vetter, Frederick J},



Download Download (PDF)   View View   Source Source   



This paper explores the performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD CPUs using a set of kernels and full applications. Our implementations efficiently exploit both SIMD and thread-level parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled GPUs. We discuss general optimization techniques for our CPU-only and CPU-GPU platforms. To fairly study performance and energy-efficiency, we also used two applications which utilize several kernels. Finally, we present an evaluation of the implementation effort required to efficiently utilize multi-core SIMD CPUs and CUDA-enabled GPUs for the benchmarks studied. Our results show that kernel-only performance and energy-efficiency could be misleading when evaluating parallel hardware; therefore, true results must be obtained using full applications. We show that, after all respective optimizations have been made, the best performing and energy-efficient platform varies for different benchmarks. Finally, our results show that PPEH (Performance gain Per Effort Hours), our newly introduced metric, can affectively be used to quantify efficiency of implementation effort across different benchmarks and platforms.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1496 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

255 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: