10542

Optimal Configuration of GPU Cache Memory to Maximize the Performance

Leonid Djinevski, Sime Arsenovski, Sasko Ristov, Marjan Gusev
FON University, Av. Vojvodina, 1000 Skopje, Macedonia
ICT Innovations, 2013
@article{djinevski2013optimal,

   title={Optimal Configuration of GPU Cache Memory to Maximize the Performance},

   author={Djinevski, Leonid and Arsenovski, Sime and Ristov, Sasko and Gusev, Marjan},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

694

views

GPU devices offer great performance when dealing with algorithms that require intense computational resources. A developer can configure the L1 cache memory of the latest GPU Kepler architecture with different cache size and cache set associativity, per Streaming Multiprocessors (SM). The performance of the computation intensive algorithms can be affected by these cache parameters. In this paper, we evaluate the influence of the performance for all possible configurations of L1 cache size and associativity, for dense matrix-matrix multiplication algorithm for various problem sizes. The results show a small impact of various L1 cache memory configurations for the overall performance of the algorithm.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

122 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1179 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: