10552

Adjustable GPU Acceleration for Hermitian Eigensystems

Michael T. Garba, Horacio Gonzalez-Velez, Daniel L. Roach
IDEAS Research Institute, Robert Gordon University, Aberdeen AB25 1HG, United Kingdom
Lecture Notes in Computer Science 01/2013, 7776:150-161, 2013

@article{garba2013adjustable,

   title={Adjustable GPU Acceleration for Hermitian Eigensystems},

   author={Garba, Michael T and Gonz{‘a}lez–V{‘e}lez, Horacio and Roach, Daniel},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

540

views

This paper explores the early implementation of high-performance routines for the solution of multiple large Hermitian eigenvector and eigenvalue systems on a Graphics Processing Unit (GPU). We report a performance increase of up to two orders of magnitude over the original EISPACK routines with a NVIDIA Tesla C2050 GPU, potentially allowing an order of magnitude increase in the complexity or resolution of a Inelastic Neutron Scattering (INS) modelling application.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: