10559

ClusterWatch: Flexible, Lightweight Monitoring for High-end GPGPU Clusters

Magdalena Slawinska, Karsten Schwan, Greg Eisenhauer
College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0250
CERCS Technical Report GIT-CERCS-13-07, 2013
@article{slawinska2013clusterwatch,

   title={ClusterWatch: Flexible, Lightweight Monitoring for High-end GPGPU Clusters},

   author={Slawinska, Magdalena and Schwan, Karsten and Eisenhauer, Greg},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

400

views

The ClusterWatch middleware provides runtime flexibility in what system-level metrics are monitored, how frequently such monitoring is done, and how metrics are combined to obtain reliable information about the current behavior of GPGPU clusters. Interesting attributes of ClusterWatch are (1) the ease with which different metrics can be added to the system-by simply deploying additional "cluster spies," (2) the ability to filter and process monitoring metrics at their sources, to reduce data movement overhead, (3) flexibility in the rate at which monitoring is done, (4) efficient movement of monitoring data into backend stores for long-term or historical analysis, and most importantly, (5) specific support for monitoring the behavior and use of the GPGPUs used by applications. This paper presents our initial experiences with using ClusterWatch to assess the performance behavior of the a larger-scale GPGPU-based simulation code. We report the overheads seen when using ClusterWatch, the experimental results obtained for the simulation, and the manner in which ClusterWatch will interact with infrastructures for detailed program performance monitoring and profiling such as TAU or Lynx. Experiments conducted on the NICS Keeneland Initial Delivery System (KIDS), with up to 64 nodes, demonstrate low monitoring overheads for high fidelity assessments of the simulation’s performance behavior, for both its CPU and GPU components.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

243 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1469 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: