A GPU Implementation of Parallel Constraint-based Local Search

Alejandro Arbelaez, Philippe Codognet
JFLI, University of Tokyo
Techniques foR Implementing Constraint programming Systems (TRICS), 2013

   title={A GPU Implementation of Parallel Constraint-based Local Search},

   author={Arbelaez, Alejandro and Codognet, Philippe},



Download Download (PDF)   View View   Source Source   



In this paper we study the performance of constraint-based local search solvers on a GPU. The massively parallel architecture of the GPU makes it possible to explore parallelism at two different levels inside the local search algorithm. First, by executing multiple copies of the algorithm in a multi-walk manner and, second, by evaluating large neighborhoods in parallel in a single-walk manner. Experiments on three well-known problem benchmarks indicate that the current GPU implementation is up to 17 times faster than a well-tuned sequential algorithm implemented on a desktop computer.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1548 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

275 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: