10618

Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators

Dominik Szalkowski, Przemyslaw Stpiczynski
Institute of Mathematics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, Lublin, Poland
Federated Conference on Computer Science and Information Systems, 2013
@article{szalkowski2013template,

   title={Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators},

   author={Sza{l}kowski, Dominik and Stpiczynski, Przemys{l}aw},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

1873

views

The aim of the paper is to show how to design and implement fast parallel algorithms for Linear Congruential, Lagged Fibonacci and Wichmann-Hill pseudorandom number generators. The new algorithms employ the divide-and-conquer approach for solving linear recurrence systems. They are implemented on multi GPU-accelerated systems using CUDA. Numerical experiments performed on a computer system with two Fermi GPU cards show that our software achieve good performance in comparison to the widely used NVIDIA CURAND Library.
VN:F [1.9.22_1171]
Rating: 5.0/5 (3 votes cast)
Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators, 5.0 out of 5 based on 3 ratings

Recent source codes

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472142801
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472142801
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => fgwjIcI2a03a7yfXD6RfZSrnaVM=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1966 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: