Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators

Dominik Szalkowski, Przemyslaw Stpiczynski
Institute of Mathematics, Maria Curie-Sklodowska University, Pl. M. Curie-Sklodowskiej 1, Lublin, Poland
Federated Conference on Computer Science and Information Systems, 2013

   title={Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators},

   author={Sza{l}kowski, Dominik and Stpiczynski, Przemys{l}aw},



Download Download (PDF)   View View   Source Source   Source codes Source codes




The aim of the paper is to show how to design and implement fast parallel algorithms for Linear Congruential, Lagged Fibonacci and Wichmann-Hill pseudorandom number generators. The new algorithms employ the divide-and-conquer approach for solving linear recurrence systems. They are implemented on multi GPU-accelerated systems using CUDA. Numerical experiments performed on a computer system with two Fermi GPU cards show that our software achieve good performance in comparison to the widely used NVIDIA CURAND Library.
VN:F [1.9.22_1171]
Rating: 5.0/5 (3 votes cast)
Template Library for Multi-GPU Pseudorandom Number Recursion-based Generators, 5.0 out of 5 based on 3 ratings

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1477160068
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1477160068
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => RgxeqahjbgQVrHItz4QdoXLyEZQ=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2033 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: