10654

Parametric GPU Code Generation for Affine Loop Programs

Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, P. Sadayappan
Imperial College London
The 26th International Workshop on Languages and Compilers for Parallel Computing (LCPC), 2013

@article{konstantinidis2013parametric,

   title={Parametric GPU Code Generation for Affine Loop Programs},

   author={Konstantinidis, Athanasios and Kelly, Paul HJ and Ramanujam, J and Sadayappan, P},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

1145

views

Partitioning a parallel computation into finitely sized chunks for effective mapping onto a parallel machine is a critical concern for source-to-source compilation. In the context of OpenCL and CUDA, this translates to the definition of a uniform hyper-rectangular partitioning of the parallel execution space where each partition is subject to a fine-grained distribution of resources that has a direct yet hard to estimate impact on performance. This paper develops the first compilation scheme for generating parametrically tiled codes for affine loop programs on GPUs which facilitates run-time exploration of partitioning parameters as a fast and portable way of finding the ones that yield maximum performance. Our approach is based on a parametric tiling scheme for producing wavefronts of parallel rectangular partitions of parametric size and a novel runtime system that manages wavefront execution and local memory usage dynamically through an inspector-executor mechanism. Our experimental evaluation demonstrates the effectiveness of our approach for wavefront as well as rectangularly-parallel partitionings.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481276553
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481276553
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => ZKbneqN+VCuciQKt7MYzhHRmuOA=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2081 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: