10654

Parametric GPU Code Generation for Affine Loop Programs

Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, P. Sadayappan
Imperial College London
The 26th International Workshop on Languages and Compilers for Parallel Computing (LCPC), 2013
@article{konstantinidis2013parametric,

   title={Parametric GPU Code Generation for Affine Loop Programs},

   author={Konstantinidis, Athanasios and Kelly, Paul HJ and Ramanujam, J and Sadayappan, P},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

841

views

Partitioning a parallel computation into finitely sized chunks for effective mapping onto a parallel machine is a critical concern for source-to-source compilation. In the context of OpenCL and CUDA, this translates to the definition of a uniform hyper-rectangular partitioning of the parallel execution space where each partition is subject to a fine-grained distribution of resources that has a direct yet hard to estimate impact on performance. This paper develops the first compilation scheme for generating parametrically tiled codes for affine loop programs on GPUs which facilitates run-time exploration of partitioning parameters as a fast and portable way of finding the ones that yield maximum performance. Our approach is based on a parametric tiling scheme for producing wavefronts of parallel rectangular partitions of parametric size and a novel runtime system that manages wavefront execution and local memory usage dynamically through an inspector-executor mechanism. Our experimental evaluation demonstrates the effectiveness of our approach for wavefront as well as rectangularly-parallel partitionings.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

136 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1208 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: