10682

Dandelion: a Compiler and Runtime for Heterogeneous Systems

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, Dennis Fetterly
Microsoft Research Silicon Valley
The 24th ACM Symposium on Operating Systems Principles (SOSP’13), 2013
@article{rossbach2013dandelion,

   title={Dandelion: a Compiler and Runtime for Heterogeneous Systems},

   author={Rossbach, Christopher J and Yu, Yuan and Currey, Jon and Martin, Jean-Philippe and Fetterly, Dennis},

   journal={Computer},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

461

views

Computer systems increasingly rely on heterogeneity to achieve greater performance, scalability and energy efficiency. Because heterogeneous systems typically comprise multiple execution contexts with different programming abstractions and runtimes, programming them remains extremely challenging. Dandelion is a system designed to address this programmability challenge for data-parallel applications. Dandelion provides a unified programming model for heterogeneous systems that span diverse execution contexts including CPUs, GPUs, FPGAs, and the cloud. It adopts the .NET LINQ (Language INtegrated Query) approach, integrating data-parallel operators into general purpose programming languages such as C# and F#. It therefore provides an expressive data model and native language integration for user-defined functions, enabling programmers to write applications using standard high-level languages and development tools. Dandelion automatically and transparently distributes data-parallel portions of a program to available computing resources, including compute clusters for distributed execution and CPU and GPU cores of individual nodes for parallel execution. To enable automatic execution of .NET code on GPUs, Dandelion cross-compiles .NET code to CUDA kernels and uses the PTask runtime to manage GPU execution. This paper discusses the design and implementation of Dandelion, focusing on the distributed CPU and GPU implementation. We evaluate the system using a diverse set of workloads.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

147 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1229 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: