Performance Comparison of GPU, DSP and FPGA implementations of image processing and computer vision algorithms in embedded systems

Egil Fykse
Department of Electronics and Telecommunications, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology
Norwegian University of Science and Technology, 2013

   title={Performance Comparison of GPU, DSP and FPGA implementations of image processing and computer vision algorithms in embedded systems},

   author={Fykse, Egil},


   publisher={Institutt for elektronikk og telekommunikasjon}


The objective of this thesis is to compare the suitability of FPGAs, GPUs and DSPs for digital image processing applications. Normalized cross-correlation is used as a benchmark, because this algorithm includes convolution, a common operation in image processing and elsewhere. Normalized cross-correlation is a template matching algorithm that is used to locate predefined objects in a scene image. Because the throughput of DSPs is low for efficient calculation of normalized cross-correlation, the focus is on FPGAs and GPUs. An efficient FPGA implementation of direct normalized cross-correlation is created and compared against a GPU implementation from the OpenCV library. Performance, cost, development time and power consumption are evaluated for the two platforms. The performance of the GPU implementation is slightly better than the FPGA implementation, and less time is spent developing a working solution. However, the power consumption of the GPU is higher. Both solutions are viable, so the most suitable platform will depend on the specific project requirements for image size, throughput, latency, power consumption, cost and development time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

244 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1474 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: