Empirical performance modeling of GPU kernels using active learning

Prasanna Balaprakash, Karl Rupp, Azamat Mametjanov, Robert B. Gramacy, Paul D. Hovland, Stefan M. Wild
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
International Conference on Parallel Computing (ParCo), 2013

   title={Empirical Performance Modeling of GPU Kernels Using Active Learning},

   booktitle={International Conference on Parallel Computing – ParCo2013},


   address={Munich, Germany},

   author={Prasanna Balaprakash and K. Rupp and A. Mametjanov and R. B. Gramacy and Paul D. Hovland and S. M. Wild}


Download Download (PDF)   View View   Source Source   



We focus on a design-of-experiments methodology for developing empirical performance models of GPU kernels. Recently, we developed an iterative active learning algorithm that adaptively selects parameter configurations in batches for concurrent evaluation on CPU architectures in order to build performance models over the parameter space. In this paper, we illustrate the adoption of the algorithm when concurrent evaluations are not possible, which is particularly useful in the absence of GPU clusters. We present an empirical study of the algorithm on a diverse set of GPU kernels and hardware. We show that even when concurrent evaluations are not possible, the default batch mode of the algorithm yields better models and the iterative active learning algorithm reduces the overall time required to obtain high-quality empirical performance models for GPU kernels.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

244 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1474 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: