Dynamic Load Balancing in GPU-Based Systems – Early Experiments

Alvaro Luiz Fazenda, Celso L. Mendes, Laxmikant V. Kale, Jairo Panetta, Eduardo Rocha Rodrigues
Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos-SP, Brazil
arXiv:1310.4218 [cs.DC], (15 Oct 2013)

   author={Fazenda}, A.~L. and {Mendes}, C.~L. and {Kale}, L.~V. and {Panetta}, J. and {Rocha Rodrigues}, E.},

   title={"{Dynamic Load Balancing in GPU-Based Systems – Early Experiments}"},

   journal={ArXiv e-prints},




   keywords={Computer Science – Distributed, Parallel, and Cluster Computing, D.1.3},




   adsnote={Provided by the SAO/NASA Astrophysics Data System}


Download Download (PDF)   View View   Source Source   



The dynamic load-balancing framework in Charm++/AMPI, developed at the University of Illinois, is based on using processor virtualization to allow thread migration across processors. This framework has been successfully applied to many scientific applications in the past, such as BRAMS, NAMD, ChaNGa, and others. Most of these applications use only CPUs to perform their operations. However, the use of GPUs to improve computational performance is quickly getting massively disseminated in the high-performance computing community. This paper aims to investigate how the same Charm++/AMPI framework can be extended to balance load in a synthetic application inspired by the BRAMS numerical forecast model, running mostly on GPUs rather than on CPUs. Many major questions involving the use of GPUs with AMPI where handled in this work, including: how to measure the GPU’s load, how to use and share GPUs among user-level threads, and what results are obtained when applying the mandatory over-decomposition technique to a GPU-accelerated program.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1543 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

274 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: