10756

FlexGrip: A Soft GPGPU for FPGAs

Kevin Andryc, Murtaza Merchant, Russell Tessier
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
International Conference on Field-Programmable Technology, 2013
@article{andryc2013flexgrip,

   title={FlexGrip: A Soft GPGPU for FPGAs},

   author={Andryc, Kevin and Merchant, Murtaza and Tessier, Russell},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

788

views

Over the past decade, soft microprocessors and vector processors have been extensively used in FPGAs for a wide variety of applications. However, it is difficult to straightforwardly extend their functionality to support conditional and thread-based execution characteristic of general-purpose graphics processing units (GPGPUs) without recompiling FPGA hardware for each application. In this paper, we describe the implementation of FlexGrip, a soft GPGPU architecture which has been optimized for FPGA implementation. This architecture supports direct CUDA compilation to a binary which is executable on the FPGA-based GPGPU without hardware recompilation. Our architecture is customizable, thus providing the FPGA designer with a selection of GPGPU cores which display performance versus area tradeoffs. The benefits of our architecture are evaluated for a collection of five standard CUDA benchmarks which are compiled using standard GPGPU compilation tools. Speedups of up to 30x versus a MicroBlaze microprocessor are achieved for designs which take advantage of the conditional execution capabilities offered by FlexGrip.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1218 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: