10761

Optimization of the HEFT algorithm for a CPU-GPU environment

Karan R. Shetti, Suhaib A. Fahmy, Timo Bretschneider
School of Computer Engineering, Nanyang Technological University, Singapore
14′th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’13), 2013
@article{shetti2013optimization,

   title={Optimization of the HEFT algorithm for a CPU-GPU environment},

   author={Shetti, Karan R and Fahmy, Suhaib A and Bretschneider, Timo},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

314

views

Scheduling applications efficiently on a network of computing systems is crucial for high performance. This problem is known to be NP-Hard and is further complicated when applied to a CPU-GPU heterogeneous environment. Heuristic algorithms like Heterogeneous Earliest Finish Time (HEFT) have shown to produce good results for other heterogeneous environments like Grids and Clusters. In this paper, we propose a novel optimization of this algorithm that takes advantage of dissimilar execution times of the processors in the chosen environment. We optimize both the task ranking as well as the processor selection steps of the HEFT algorithm. By balancing the locally optimal result with the globally optimal result, we show that performance can be improved significantly without any change in the complexity of the algorithm (as compared to HEFT). Using randomly generated Directed Acyclic Graphs (DAGs), the new algorithm HEFT-NC (No-Cross) is compared with HEFT both in terms of speedup and schedule length. We show that the HEFT-NC outperforms HEFT algorithm and is consistent across different graph shapes and task sizes.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

122 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1179 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: