10777

2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation

Michael S. Warren
Theoretical Division, Los Alamos National Laboratory
arXiv:1310.4502 [astro-ph.IM], (16 Oct 2013)
@article{2013arXiv1310.4502W,

   author={Warren}, M.~S.},

   title={"{2HOT: An Improved Parallel Hashed Oct-Tree N-Body Algorithm for Cosmological Simulation}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1310.4502},

   primaryClass={"astro-ph.IM"},

   keywords={Astrophysics – Instrumentation and Methods for Astrophysics, Astrophysics – Cosmology and Extragalactic Astrophysics, Computer Science – Distributed, Parallel, and Cluster Computing},

   year={2013},

   month={oct},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1310.4502W},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

852

views

We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (2^18) processors. We present error analysis and scientific application results from a series of more than ten 69 billion (4096^3) particle cosmological simulations, accounting for 4×10^20 floating point operations. These results include the first simulations using the new constraints on the standard model of cosmology from the Planck satellite. Our simulations set a new standard for accuracy and scientific throughput, while meeting or exceeding the computational efficiency of the latest generation of hybrid TreePM N-body methods.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474799708
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474799708
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => hCutj1FJc9mgprYt863Yc9W0s7Y=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1996 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: