10812

Computing finite models using free Boolean generators

Zarko Mijajlovic, Aleksandar Pejovic
Faculty of Mathematics, University of Belgrade, Belgrade, Serbia
arXiv:1310.6978 [cs.LO], (23 Oct 2013)
@article{2013arXiv1310.6978M,

   author={Mijajlovic}, Z. and {Pejovic}, A.},

   title={"{Computing finite models using free Boolean generators}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1310.6978},

   primaryClass={"cs.LO"},

   keywords={Computer Science – Logic in Computer Science, Mathematics – Logic, 03C98, B.2.1, C.1.2, G.2.1, I.1.2, I.2.4},

   year={2013},

   month={oct},

   adsurl={http://adsabs.harvard.edu/abs/2013arXiv1310.6978M},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

809

views

A parallel method for computing Boolean expressions based on the properties of finite free Boolean algebras is presented. We also show how various finite combinatorial objects can be codded in the formalism of Boolean algebras and counted by this procedure. Particularly, using a translation of first order predicate formulas to propositional formulas, we give a method for constructing and counting finite models of the first order theories. An implementation of the method that can be run on multi-core CPUs as well as on highly parallel GPUs is outlined.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1480795086
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1480795086
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => NKlt2hZc61ISkxiyErb3AOfAzR0=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2079 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: