10871

GPU-Based Space-Time Adaptive Processing (STAP) for Radar

Thomas M. Benson, Ryan K. Hersey, Edwin Culpepper
Sensors and Electromagnetic Applications Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, USA
IEEE High Performance Extreme Computing Conference(HPEC ’13), 2013
@article{benson2013gpu,

   title={GPU-Based Space-Time Adaptive Processing (STAP) for Radar},

   author={Benson, Thomas M and Hersey, Ryan K and Culpepper, Edwin},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

589

views

Space-time adaptive processing (STAP) utilizes a two-dimensional adaptive filter to detect targets within a radar data set with speeds similar to the background clutter. While adaptively optimal solutions exist, they are prohibitively computationally intensive. Thus, researchers have developed alternative algorithms with nearly optimal filtering performance and greatly reduced computational intensity. While such alternatives reduce the computational requirements, the computational burden remains significant and efficient implementations of such algorithms remains an area of active research. This paper focuses on an efficient graphics processor unit (GPU) based implementation of the extended factored algorithm (EFA) using the compute unified device architecture (CUDA) framework provided by NVIDIA.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472702557
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472702557
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 0OImZiHvX8To8o06N46N1MSCqBM=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1973 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: