Toward Better Computation Models for Modern Machines

Tomasz Jurkiewicz
Saarland University, Saarbrucken, Germany
Saarland University, 2013
@phdthesis{jurkiewicz2013toward,

   title={Toward Better Computation Models for Modern Machines},

   author={Jurkiewicz, Tomasz},

   year={2013}

}

Download Download (PDF)   View View   Source Source   
Modern computers are not random access machines (RAMs). They have a memory hierarchy, multiple cores, and a virtual memory. We address the computational cost of the address translation in the virtual memory and difficulties in design of parallel algorithms on modern many-core machines. Starting point for our work on virtual memory is the observation that the analysis of some simple algorithms (random scan of an array, binary search, heapsort) in either the RAM model or the EM model (external memory model) does not correctly predict growth rates of actual running times. We propose the VAT model (virtual address translation) to account for the cost of address translations and analyze the algorithms mentioned above and others in the model. The predictions agree with the measurements. We also analyze the VAT-cost of cache-oblivious algorithms. In the second part of the paper we present a case study of the design of an efficient 2D convex hull algorithm for GPUs. The algorithm is based on the ultimate planar convex hull algorithm of Kirkpatrick and Seidel, and it has been referred to as the first successful implementation of the QuickHull algorithm on the GPU by Gao et al. in their 2012 paper on the 3D convex hull. Our motivation for work on modern many-core machines is the general belief of the engineering community that the theory does not produce applicable results, and that the theoretical researchers are not aware of the difficulties that arise while adapting algorithms for practical use. We concentrate on showing how the high degree of parallelism available on GPUs can be applied to problems that do not readily decompose into many independent tasks.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org