Performance Evaluation of R with Intel Xeon Phi Coprocessor

Yaakoub El-Khamra, Niall Gaffney, David Walling, Eric Wernert, Weijia Xu, Hui Zhang
Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas USA
The First Workshop on Big Data Benchmarks, Performance Optimization, and Emerging hardware (BPOE 2013) in conjunction with 2013 IEEE International Conference on Big Data (IEEE Big Data 2013), 2013

   title={Performance Evaluation of R with Intel Xeon Phi Coprocessor},

   author={El-Khamra, Yaakoub and Gaffney, Niall and Walling, David and Wernert, Eric and Xu, Weijia and Zhang, Hui},



Download Download (PDF)   View View   Source Source   Source codes Source codes




Over the years, R has been adopted as a major data analysis and mining tool in many domain fields. As Big Data overwhelms those fields, the computational needs and workload of existing R solutions increases significantly. With recent hardware and software developments, it is possible to enable massive parallelism with existing R solutions with little to no modification. In this paper, we evaluated approaches to speed up R computations with the utilization of the Intel Math Kernel Library and automatic offloading to Intel Xeon Phi SE10P Co-processor. The testing workload includes a popular R benchmark and a practical application in health informatics. There are up to five times speedup gains from using MKL with a 16 cores without modification to the existing code for certain computing tasks. Offloading to Phi co-processor further improves the performance. The performance gains through parallelization increases as the data size increases, a promising result for adopting R for big data problem in the future.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1511 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

260 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: