10900

Optical Flow via Locally Adaptive Fusion of Complementary Data Costs

Tae Hyun Kim, Hee Seok Lee, Kyoung Mu Lee
Department of ECE, ASRI, Seoul National University, 151-742, Seoul, Korea
International Computer Vision Conference (ICCV 2013), 2013
@article{kim2013optical,

   title={Optical Flow via Locally Adaptive Fusion of Complementary Data Costs},

   author={Kim, Tae Hyun and Lee, Hee Seok and Lee, Kyoung Mu},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

329

views

Many state-of-the-art optical flow estimation algorithms optimize the data and regularization terms to solve ill-posed problems. In this paper, in contrast to the conventional optical flow framework that uses a single or fixed data model, we study a novel framework that employs locally varying data term that adaptively combines different multiple types of data models. The locally adaptive data term greatly reduces the matching ambiguity due to the complementary nature of the multiple data models. The optimal number of complementary data models is learnt by minimizing the redundancy among them under the minimum description length constraint (MDL). From these chosen data models, a new optical flow estimation energy model is designed with the weighted sum of the multiple data models, and a convex optimization-based highly effective and practical solution that finds the optical flow, as well as the weights is proposed. Comparative experimental results on the Middlebury optical flow benchmark show that the proposed method using the complementary data models outperforms the state-of-the art methods.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

125 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1181 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: