Real-time rendering of large surface-scanned range data natively on a GPU

Sajid Farooq
University of Glasgow
University of Glasgow, 2013

   title={Real-time rendering of large surface-scanned range data natively on a GPU},

   author={Farooq, Sajid},


   school={University of Glasgow}


Download Download (PDF)   View View   Source Source   



This thesis presents research carried out for the visualisation of surface anatomy data stored as large range images such as those produced by stereo-photogrammetric, and other triangulation-based capture devices. As part of this research, I explored the use of points as a rendering primitive as opposed to polygons, and the use of range images as the native data representation. Using points as a display primitive as opposed to polygons required the creation of a pipeline that solved problems associated with point-based rendering. The problems investigated were scattered-data interpolation (a common problem with point-based rendering), multi-view rendering, multi-resolution representations, anti-aliasing, and hidden-point removal. In addition, an efficient real-time implementation on the GPU was carried out.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1513 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

260 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: