10967

Regression Modelling of Power Consumption for Heterogeneous Processors

Tahir Diop
Departement of Electrical and Computer Engineering, University of Toronto
University of Toronto, 2013
@phdthesis{diop2013regression,

   title={Regression Modelling of Power Consumption for Heterogeneous Processors},

   author={Diop, Tahir},

   year={2013},

   school={University of Toronto}

}

Download Download (PDF)   View View   Source Source   

594

views

This thesis is composed of two parts, that relate to both parallel and heterogeneous processing. The first describes DistCL, a distributed OpenCL framework that allows a cluster of GPUs to be programmed like a single device. It uses programmer-supplied meta-functions that associate work-items to memory. DistCL achieves speedups of up to 29x using 32 peers. By comparing DistCL to SnuCL, we determine that the compute-to-transfer ratio of a benchmark is the best predictor of its performance scaling when distributed. The second is a statistical power model for the AMD Fusion heterogeneous processor. We present a systematic methodology to create a representative set of compute micro-benchmarks using data collected from real hardware. The power model is created with data from both micro-benchmarks and application benchmarks. The model showed an average predictive error of 6.9% on heterogeneous workloads. The Multi2Sim heterogeneous simulator was modified to support configurable power modelling.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1480712970
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1480712970
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => c0Eko1TgB00EXtvL6LB9KKVnOb8=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2080 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: