11077

A New Software Based GPU Framework

Evgeny Miretsky
University of Toronto
University of Toronto, 2013
@phdthesis{miretsky2013software,

   title={Software Based GPU Framework},

   author={Miretsky, Evgeny},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

263

views

A software based GPU design, where most of the 3D pipeline is executed in software on shaders, with minimal support from custom hardware blocks, provides three benefits, it: (1) simplifies the GPU design, (2) turns 3D graphics into a general purpose application, and (3) opens the door for applying compiler optimization to the whole 3D pipeline. In this thesis we design a framework and a full software stack to support further research in the field. LLVM IR is used as a flexible shader IR, and all fixed-function hardware blocks are translated into it. A sort-middle, tile-based, architecture is used for the 3D pipeline and trace-file based methodology is applied to make the system more modular. Further, we implement a GPU model and use it to perform an architectural exploration of the proposed software based GPU system design space.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

123 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1181 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: