A GPU Implementation of Dynamic Programming for the Optimal Polygon Triangulation

Yasuaki Ito, Koji Nakano
Department of Information Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan
IEICE Transactions on Information and Systems, Vol. E96-D, No. 12, pp. 2596-2603, 2013
@article{yasuaki2013gpu,

   title={A GPU Implementation of Dynamic Programming for the Optimal Polygon Triangulation},

   author={Yasuaki, ITO and NAKANO, Koji},

   journal={IEICE TRANSACTIONS on Information and Systems},

   volume={96},

   number={12},

   pages={2596–2603},

   year={2013},

   publisher={The Institute of Electronics, Information and Communication Engineers}

}

Download Download (PDF)   View View   Source Source   
This paper presents a GPU (Graphics Processing Units) implementation of dynamic programming for the optimal polygon triangulation. Recently, GPUs can be used for general purpose parallel computation. Users can develop parallel programs running on GPUs using programming architecture called CUDA (Compute Unified Device Architecture) provided by NVIDIA. The optimal polygon triangulation problem for a convex polygon is an optimization problem to find a triangulation with minimum total weight. It is known that this problem for a convex n-gon can be solved using the dynamic programming technique in O(n3) time using a work space of size O(n2). In this paper, we propose an efficient parallel implementation of this O(n3)-time algorithm on the GPU. In our implementation, we have used two new ideas to accelerate the dynamic programming. The first idea (adaptive granularity) is to partition the dynamic programming algorithm into many sequential kernel calls of CUDA, and to select the best parameters for the size and the number of blocks for each kernel call. The second idea (sliding and mirroring arrangements) is to arrange the working data for coalesced access of the global memory in the GPU to minimize the memory access overhead. Our implementation using these two ideas solves the optimal polygon triangulation problem for a convex 8192-gon in 5.57 seconds on the NVIDIA GeForce GTX 680, while a conventional CPU implementation runs in 1939.02 seconds. Thus, our GPU implementation attains a speedup factor of 348.02.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org