11228

GPU-Accelerated parallel FDTD on Distributed Heterogeneous Platform

Ronglin Jiang, Shugang Jiang, Yu Zhang, Ying Xu, Lei Xu, Dandan Zhang
Research and Development Department, Shanghai Supercomputer Center, Shanghai 201203, China
International Journal of Antennas and Propagation, 2014
@article{jiang2014gpu,

   title={GPU-Accelerated parallel FDTD on Distributed Heterogeneous Platform},

   author={Jiang, Ronglin and Jiang, Shugang and Zhang, Yu and Xu, Ying and Xu, Lei and Zhang, Dandan},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

357

views

This paper introduces a (Finite-Difference Time-Domain) FDTD code written in Fortran and CUDA for realistic electromagnetic calculations with parallelization methods of Message Passing Interface (MPI) and Open Multi-Processing (OpenMP). Since both Central Processing Unit (CPU) and Graphics Processing Unit (GPU) resources are utilized, a faster execution speed can be reached compared to a traditional pure GPU code. In our experiments, 64 NVIDIA TESLA K20m GPUs and 64 INTEL XEON E5-2670 CPUs are used to carry out the pure CPU, pure GPU and CPU + GPU tests. Relative to the pure CPU calculations for the same problems, the speedup ratio achieved by CPU + GPU calculations is around 14. Compared to the pure GPU calculations for the same problems, the CPU + GPU calculations have 7.6 % – 13.2 % performance improvement. Because of the small memory size of GPUs, the FDTD problem size is usually very small. However, this code can enlarge the maximum problem size by 25 % without reducing the performance of traditional pure GPU code. Finally, using this code, a microstrip antenna array with 16 x 18 elements is calculated and the radiation patterns are compared with the ones of MoM. Results show that there is a well agreement between them.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1218 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: