11231

Importance-Driven Isosurface Decimation for Visualization of Large Simulation Data Based on OpenCL

Yi Peng, Li Chen, Jun-Hai Yong
Tsinghua University, Beijing
hal-00920669, (19 December 2013)
@article{peng:hal-00920669,

   hal_id={hal-00920669},

   url={http://hal.inria.fr/hal-00920669},

   title={Importance-driven isosurface decimation for visualization of large simulation data based on OpenCL},

   author={Peng, Yi and Chen, Li and Yong, Jun-Hai},

   language={Anglais},

   affiliation={cgcad, Thss , School of Software – THSS},

   publisher={IEEE},

   journal={COMPUTING IN SCIENCE & ENGINEERING},

   audience={internationale},

   year={2013},

   month={Apr},

   pdf={http://hal.inria.fr/hal-00920669/PDF/a_e_2108a_ae_ae_a_e_a_.pdf}

}

Download Download (PDF)   View View   Source Source   

665

views

For large simulation data, Parallel Marching Cubes algorithm is efficient and commonly used to extract isosurfaces in 3D scalar field. However, the isosurface meshes are sometimes too dense and it is difficult for scientists to specify the areas they are interested in. In this paper, we provide them a new way to define mesh importance for decimation using transfer functions and visualize large simulation data in case the normal visualization methods cannot handle due to memory limit. We also introduce a parallel isosurface simplification framework which uses pyramid peeling to extract the decimated meshes progressively without generating the original surface. Since the implementation uses OpenCL which is oriented to heterogeneous computing, our method can be applied to different parallel systems and scientists can see the visualization results while doing simulations. Finally, we evaluate the performances of our algorithm and use different scientific datasets to show the efficiency of our method.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474769302
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474769302
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => qaSLTxdlJjf6+hcjXINK6K+mc64=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1995 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: