Towards Portable Performance for Explicit Hydrodynamics Codes

A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman, S. A. Jarvis
Performance Computing and Visualisation, Department of Computer Science, University of Warwick, UK
1st International Workshop on OpenCL (IWOCL 13), 2013

   title={Towards Portable Performance for Explicit Hydrodynamics Codes},

   author={Mallinson, AC and Beckingsale, DA and Gaudin, WP and Herdman, JA and Jarvis, SA},



Download Download (PDF)   View View   Source Source   Source codes Source codes




Significantly increasing intra-node parallelism is widely recognised as being a key prerequisite for reaching exascale levels of computational performance. In future exascale systems it is likely that this performance improvement will be realised by increasing the parallelism available in traditional CPU devices and using massively-parallel hardware accelerators. The MPI programming model is starting to reach its scalability limit and is unable to take advantage of hardware accelerators; consequently, HPC centres (such as AWE) will have to decide how to develop their existing applications to best take advantage of future HPC system architectures. This work seeks to evaluate OpenCL as a candidate technology for implementing an alternative hybrid programming model, and whether it is able to deliver improved code portability whilst also maintaining or improving performance. On certain platforms the performance of our OpenCL implementation is within 4% of an optimised native version.
VN:F [1.9.22_1171]
Rating: 3.7/5 (3 votes cast)
Towards Portable Performance for Explicit Hydrodynamics Codes, 3.7 out of 5 based on 3 ratings

* * *

* * *

Follow us on Twitter

HGPU group

1585 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

303 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: