11269

GPU based Implementation of Film Flicker Reduction Algorithms

Martn Pineyro, Julieta Keldjian, Alvaro Pardo
Department of Electrical Engineering, School of Engineering and Technologies, Universidad Catolica del Uruguay
18th Iberoamerican Congress on Pattern Recognition (CIARP’13), 2013
@incollection{pineyro2013gpu,

   title={GPU Based Implementation of Film Flicker Reduction Algorithms},

   author={Pi{~n}eyro, Martn and Keldjian, Julieta and Pardo, Alvaro},

   booktitle={Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications},

   pages={463–470},

   year={2013},

   publisher={Springer}

}

Download Download (PDF)   View View   Source Source   

360

views

In this work we propose an algorithm for film restoration aimed at reducing the flicker effect while preserving the original overall illumination of the film. We also present a comparative study of the performance of this algorithm implemented following a sequential approach on a CPU and following a parallel approach on a GPU using OpenCL.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

151 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1252 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: