11648

Accelerating Java on Embedded GPU

Iype P. Joseph
Ottawa-Carleton Institute of Electrical and Computer Engineering, University of Ottawa, Ottawa, Canada
University of Ottawa, 2014

@phdthesis{joseph2014accelerating,

   title={Accelerating Java on Embedded GPU},

   author={Joseph, Iype P},

   year={2014},

   school={University of Ottawa}

}

Download Download (PDF)   View View   Source Source   

1455

views

Multicore CPUs (Central Processing Units) and GPUs (Graphics Processing Units) are omnipresent in today’s market-leading smartphones and tablets. With CPUs and GPUs getting more complex, maximizing hardware utilization is becoming problematic. The challenges faced in GPGPU (General Purpose computing using GPU) computing on embedded platforms are different from their desktop counterparts due to their memory and computational limitations. This thesis evaluates the performance and energy efficiency achieved by offloading Java applications to an embedded GPU. The existing solutions in literature address various techniques and benefits of offloading Java on desktop or server grade GPUs and not on embedded GPUs. Our research is focussed on providing a framework for accelerating Java programs on embedded GPUs. Our experiments were conducted on a Freescale i.MX6Q SabreLite board which encompasses a quad-core ARM Cortex A9 CPU and a Vivante GC 2000 GPU that supports the OpenCL 1.1 Embedded Profile. We successfully accelerated Java code and reduced energy consumption by employing two approaches, namely JNI-OpenCL, and JOCL, which is a popular Java-binding for OpenCL. These approaches can be easily implemented on other platforms by embedded Java programmers to exploit the computational power of GPUs. Our results show up to an 8 times increase in performance efficiency and 3 times decrease in energy consumption compared to the embedded CPU-only execution of Java program. To the best of our knowledge, this is the first work done on accelerating Java on an embedded GPU.
VN:F [1.9.22_1171]
Rating: 3.9/5 (7 votes cast)
Accelerating Java on Embedded GPU, 3.9 out of 5 based on 7 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1481449925
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1481449925
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => xXexF9kbuq5LaakzrkgESZ3uFOc=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2082 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: