11809

Optimizing Krylov Subspace Solvers on Graphics Processing Units

Hartwig Anzt, Stanimire Tomov, Piotr Luszczek, Ichitaro Yamazaki, Jack Dongarra, William Sawyer
Innovative Computing Lab, University of Tennessee, Knoxville, USA
Innovative Computing Lab, University of Tennessee, Technical report ut-eecs-14-725, 2014
@article{anzt2014optimizing,

   title={Optimizing Krylov Subspace Solvers on Graphics Processing Units},

   author={Anzt, Hartwig and Tomov, Stanimire and Luszczek, Piotr and Yamazaki, Ichitaro and Dongarra, Jack and Sawyer, William},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

302

views

Krylov subspace solvers are often the method of choice when solving sparse linear systems iteratively. At the same time, hardware accelerators such as graphics processing units (GPUs) continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to leverage the full potential of the accelerator. In this paper we target the acceleration of the BiCGSTAB solver for GPUs, showing that significant improvement can be achieved by reformulating the method and developing application-specific kernels instead of using the generic CUBLAS library provided by NVIDIA. We propose an implementation that benefits from a significantly reduced number of kernel launches and GPUhost communication events, by means of increased data locality and a simultaneous reduction of multiple scalar products. Using experimental data, we show that, depending on the dominance of the untouched sparse matrix vector products, significant performance improvements can be achieved compared to a reference implementation based on the CUBLAS library. We feel that such optimizations are crucial for the subsequent development of highlevel sparse linear algebra libraries.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1314 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: