Quantifying the Energy Efficiency of Object Recognition and Optical Flow

Michael Anderson, Forrest Iandola, Kurt Keutzer
EECS Department, University of California, Berkeley
EECS Department, University of California, Berkeley, Technical Report No. UCB/EECS-2014-22, 2014

   author={Anderson, Michael and Iandola, Forrest and Keutzer, Kurt},

   title={Quantifying the Energy Efficiency of Object Recognition and Optical Flow},

   institution={EECS Department, University of California, Berkeley},






Download Download (PDF)   View View   Source Source   



In this report, we analyze the computational and performance aspects of current state-of-the-art object recognition and optical flow algorithms. First, we identify important algorithms for object recognition and optical flow, then we perform a pattern decomposition to identify key computations. We include profiles of the runtime and energy efficiency (GFLOPS/W) for our implementation of these applications on a commercial architecture. Finally, we include an analysis of memory-bandwidth boundedness for optical flow to identify opportunities for communication-avoiding algorithms. Our results were measured on an Intel i7-4770K (Haswell) reference platform. A five-layer convolutional neural network used for object classification achieves 0.70 GFLOPS/W, which is 21% of the theoretical compute bound for this Haswell processor. On the Horn-Schunck, Lucas-Kanade, and Brox optical flow methods our implementations achieve 0.0338, 0.0103, and 0.0203 GFLOPS/W respectively. Our implementation achieves 7.9% of the theoretical bandwidth bound, assuming no cross-iteration memory optimization, for Horn-Schunk optical flow using the Jacobi solver, and 9.7% of the bandwidth bound for the conjugate-gradient solver. To improve performance, we will focus first on increasing bandwidth utilization, then on doing cross-iteration memory optimizations such as blocking and tiling the Jacobi solver and employing communication-avoiding linear solvers. We also compare the runtime-accuracy tradeoffs for each optical flow method. We find that each method has distinct advantages over the other methods in terms of the runtime-accuracy tradeoff, so we will continue to develop and support all three methods in the future.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

244 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1474 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: