Fast Burrows Wheeler Compression Using CPU and GPU

Aditya Deshpande, P J Narayanan
Center for Visual Information Technology, International Institute of Information Technology, Hyderabad – 500 032, India
International Institute of Information Technology, Technical report IIIT/TR/2014/xx, 2014

   title={Fast Burrows Wheeler Compression Using CPU and GPU},

   author={Deshpande, Aditya and Narayanan, PJ},



Download Download (PDF)   View View   Source Source   Source codes Source codes




In this paper, we present an all-core implementation of Burrows Wheeler Compression algorithm that exploits all computing resources on a system. Our focus is to provide significant benefit to everyday users on common end-to-end applications by exploiting the parallelism of multiple CPU cores and many-core GPU on their machines. The all-core framework is suitable for problems that process large files or buffers in blocks. We consider a system to be made up of compute stations and use a work-queue to dynamically divide the tasks among them. Each compute station uses an implementation that optimally exploits its architecture. We develop a fast GPU BWC algorithm by extending the state-of-the-art GPU string sort to efficiently perform BWT step of BWC. Our hybrid BWC implementation achieves a 2.9x speedup over the best CPU implementation. Our all-core framework allows concurrent processing of blocks by both GPU and all available CPU cores. We achieve a 3.06x speedup by using all CPU cores and a 4.87x speedup using the GPU also in the all-core framework. Our approach will scale to the number and type of computing resources on a system.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1545 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

275 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: