Dynamic Instrumentation and Optimization for GPU Applications

Naila Farooqui, Christopher J. Rossbach, Yuan Yu
Georgia Institute of Technology
The 4th Workshop on Systems for Future Multicore Architectures (SFMA’14), 2014

   title={Dynamic Instrumentation and Optimization for GPU Applications},

   author={Farooqui, Naila and Rossbach, Christopher J and Yu, Yuan},



Download Download (PDF)   View View   Source Source   



Parallel architectures like GPUs are a tantalizing compute fabric for performance-hungry developers. While GPUs enable order-of-magnitude performance increases in many data-parallel application domains, writing efficient codes that can actually manifest those increases is a non-trivial endeavor, typically requiring developers to exercise specialized architectural features exposed directly in the programming model. Achieving good performance on GPUs involves effort-intensive tuning, typically requiring the programmer to manually evaluate multiple code versions in search of an optimal combination of problem decomposition with architecture- and runtime-specific parameters. For developers struggling to apply GPUs to more general-purpose computing problems, the introduction of irregular data structures and access patterns serves only to exacerbate these challenges, and only increases the level of effort required. This paper proposes to automate much of this effort using dynamic instrumentation to inform dynamic, profile-driven optimizations. In this vision, the programmer expresses the application using higher-level front-end programming abstractions such as Dandelion [13], allowing the system, rather than the programmer, to explore the implementation and optimization space. We argue that such a system is both feasible and urgently needed. We present the design for such a framework, called Leo. For a range of benchmarks, we demonstrate that a system implementing our design can achieve from 1.12 to 27x speedup in kernel runtimes, which translates to 9-40% improvement for end-to-end performance.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1545 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

275 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: