11884

On optimization techniques for the matrix multiplication on hybrid CPU+GPU platforms

Luis-Pedro Garcia, Javier Cuenca, Domingo Gimenez
Technical University of Cartagena
Annals of Multicore and GPU Programming, Vol 1, No 1, 2014
@article{canovas2014optimization,

   title={On optimization techniques for the matrix multiplication on hybrid CPU+ GPU platforms},

   author={C{‘a}novas, Domingo Gim{‘e}nez and Garc{‘i}a, Luis-Pedro and Cuenca, Javier},

   journal={Annals of Multicore and GPU Programming},

   volume={1},

   number={1},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

580

views

The use of auto-tuning techniques in a matrix multiplication routine for hybrid CPU+GPU platforms is analyzed. Basic models of the execution time of the hybrid routine and information obtained during its installation are used to optimize the execution time with a balanced assignation of the computation to the computing components in the heterogeneous system. Satisfactory results are obtained, with experimental execution times close to the lowest achievable.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475174678
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475174678
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 11tD7k9Wnjze3k0E3Sf76C+KoIY=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2004 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: