11912

A GPU-Based Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud

Nguyen Quang-Hung, Le Thanh Tan, Chiem Thach Phat, Nam Thoai
Faculty of Computer Science & Engineering, HCMC University of Technology, VNUHCM, 268 Ly Thuong Kiet Street, Ho Chi Minh City, Vietnam
HCMC University of Technology, 2014
@article{quanghung2014gpu,

   title={A GPU-Based Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud},

   author={Quang-Hung, Nguyen and Tan, Le Thanh and Phat, Chiem Thach and Thoai, Nam},

   year={2014}

}

Download Download (PDF)   View View   Source Source   

942

views

In this paper, we consider power-aware task scheduling (PATS) in HPC clouds. Users request virtual machines (VMs) to execute their tasks. Each task is executed on one single VM, and requires a fixed number of cores (i.e., processors), computing power (million instructions per second – MIPS) of each core, a fixed start time and non-preemption in a duration. Each physical machine has maximum capacity resources on processors (cores); each core has limited computing power. The energy consumption of each placement is measured for cost calculating purposes. The power consumption of a physical machine is in a linear relationship with its CPU utilization. We want to minimize the total energy consumption of the placements of tasks. We propose here a genetic algorithm (GA) to solve the PATS problem. The GA is developed with two versions: (1) BKGPUGA, which is an adaptively implemented using NVIDIA’s Compute Unified Device Architecture (CUDA) framework; and (2) SGA, which is a serial GA version on CPU. The experimental results show the BKGPUGA program that executed on a single NVIDIA TESLA M2090 GPU (512 cores) card obtains significant speedups in comparing to the SGA program executing on Intel XeonTM E5-2630 (2.3 GHz) on same input problem size. Both versions share the same GA’s parameters (e.g. number of generations, crossover and mutation probability, etc.) and a relative small (10-11) on difference of two finesses between BKGPUGA and SGA. Moreover, the proposed BKGPUGA program can handle large-scale task scheduling problems with scalable speedup under limitations of GPU device (e.g. GPU’s device memory, number of GPU cores, etc.).
VN:F [1.9.22_1171]
Rating: 5.0/5 (2 votes cast)
A GPU-Based Enhanced Genetic Algorithm for Power-Aware Task Scheduling Problem in HPC Cloud, 5.0 out of 5 based on 2 ratings

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475086499
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475086499
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => PFoLee3um/9EhoQl2q3qMR69kEA=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2001 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: